News & Events > Drone Technology Proliferation in Small Wars

Drone Technology Proliferation in Small Wars

  • Oct 4, 2019
  • Categories: Counter Drone News

Drone Technology Proliferation in Small Wars

Scott Crino and Andy Dreby

The recent drone attacks targeting critical components of Saudi Arabia’s energy sector, highlighted by the September fourteenth attacks on Saudi Arabia’s Khurais oilfield and Abqaiq refinery, demonstrate the strategic effect small drones can make in conflict zones. While initially attributed to the Houthi‑Movement, officially Ansar Allah, the attacks on Khurais and Abqaiq originated from Iranian territory. The fiery videos of the attacks and their impact on Saudi oil production brought international attention to the Arabian Peninsula where the Houthis and the Yemeni government are locked in five-year-old civil war.

With Iranian technical and material assistance, the Houthis have conducted dozens of UAS attacks in recent months against targets deep inside the Saudi Kingdom who are leading a coalition against the rebels. The Houthis drone war against the Saudis supports a propaganda strategy of theirs which aims to create the impression the Houthis are strong and the Saudis are unable to contain them. While the Houthis have on occasion scored hits against their intended targets, most of the Houthi attacks either miss their marks or are defeated by Saudi air defenses. While the Houthi rebels have an undeniable drone capability, the Khurais and Abqaiq attacks were an Iranian operation, likely carried out by the Iranian Revolutionary Guard Corps with the direction of the attack coming from outside Yemen, behind Saudi radars.

The Saudi’s experiences in defending their country from Houthi-Movement drones mirror recent, ongoing developments in the military use of drones in other small wars. In the last few years, irregular militaries have made increasing use of small drones on their battlefields, as have terror groups in their campaigns. The technological trends and operational demands which are driving this growing presence is unlikely to change in the near future. Drones, also known as unmanned aircraft vehicles (UAV), were once only found in advanced, well-funded militaries but now; due to technology advances and lowering costs, drones play a salient role in many of the world’s major, low intensity conflicts. This is especially true in the Arabian Peninsula, Middle East’s Levant, Libya in North Africa, and the Donbass Region of Eastern Ukraine. In these fights, a mix of commercially available, custom built and military grade drones have enabled combatants to push themselves into the air domain to perform ISR, affect command and control of ground forces, and conduct lethal kinetic attacks.

This article examines how technological innovation is contributing to the growing role of drones in small wars and how the application of new technology is sometimes shaped by the operational environment and external actors. It will also consider how new change may soon increase the threat of these unmanned systems. The article will use the terms drone and UAV interchangeably to mean unmanned aircraft. The term unmanned aerial systems (UAS) will mean something more; a UAS is a complete system to include the drone, pilot, ground control station and any other components involved in flying the aircraft.

Small UAS Technology Advances

While the Houthis’ drone capability, when compared to other irregular military forces, is without peer in terms of its range and destructiveness; it has evolved to its advanced state, due in large part to the unique circumstances of the Yemen Civil War’s operational environment. In Yemen, a variety of factors, such as available funding, access to Iranian technology, advantageous terrain and the need for very long range weaponry have all contributed to or compelled the evolution of the Houthis drone capabilities. That said, in other conflict zones where drones are present, the high degree of technical sophistication and tactical expertise evidenced, in some cases, surpasses the brute strength of the Houthi systems. For instance, in Ukraine this April, a spokesperson for the self-proclaimed, Russian-backed Donetsk Peoples’ Republic (DPR) displayed a captured Ukraine custom-built hexacoptor which used a sophisticated commercial flight controller to sense and account for orientation changes of the aircraft and could be programmed for autonomous flight. The same aircraft had lithium-ion batteries with a slow discharge rate to improve endurance, operated at 433 MHz to maintain communications at longer ranges, used machine-made calipers to carry-two cylindrical bombs, and a zoom lens for targeting and making post-attack assessments. In all, it is a very capable aircraft.[i]

READ FULL ARTICLE COURTESY OF SMALL WARS JOURNAL

Related Posts

  • FAA Evaluates Drone Detection Systems Around Denver

      November 16– Unmanned Aircraft Systems (UAS) that enter the protected airspace around airports can pose serious threats to safety. The FAA is coordinating with our government and industry partners to evaluate technologies that can be used safely to detect drones near airports. This week, the FAA and the Department of Homeland Security (DHS) are […]

  • Implementing Combat Lessons with C-UAV Capabilities

    Determined to meet the challenge of hostile Unmanned Aerial Systems (UAS), the US Army acquired a number of countermeasures able to defeat such threats using electronic warfare. The Islamic State in Iraq and Syria pioneered the use of commercially available micro drones armed for attack or suicide missions. These weapons were used on a large […]

  • ORBITAL ATK CREATES INTEGRATED, COUNTER UAS CAPABILITY

    At DSEI, Orbital ATK showcases Tactical-Robotic Exterminator (T-REX), a mounted and integrated version of the combat-proven Liteye AUDS non-lethal Electronic Attack (EA) capability combined with the lethal defeat capability of the Orbital ATK XM914 30mm BUSMASTER Chain Gun. This new mounted system integrated with tactical radar detection and electro-optical infrared (EO/IR) sensors, provides great Unmanned Aerial System (UAS) identification […]

This website uses cookies to ensure you get the best experience on our website. Visit our Privacy & Terms of Use here.

Skip to content